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Feature Extraction 
 
 
Abstract 
 
Structural health monitoring is the process of implementing a damage identification strategy for 
aerospace, civil and mechanical engineering infrastructure.  Under this context, feature extraction is 
the process of identifying damage-sensitive information from measured data.  Feature extraction is 
an essential component of a SHM system needed to convert raw sensor data into useful information 
about the structural health condition. The need for robust health monitoring and prognosis of 
components in remote or difficult to access locations is driving the advancement of sensing 
hardware and processing algorithms. The Wireless Intelligent Sensing Devices (WISD) research 
project aims to attend to this need.  In this document a feature extraction algorithm, referred to as 
soft computing feature extraction algorithm, is developed as part of the WISD project to extract 
damage-sensitive information from measured response data of tie bar and bearing system of pitch 
link components of the main rotor hub of a Lynx Helicopter.  The feature extraction algorithm is 
based on a combining of discrete wavelet transform theory and fuzzy logic theory.  The results of 
applying the proposed feature extraction approach to tie bar and pitch link data are presented.  
Additionally, methods for pattern recognition and critical degradation detection of tie bar and 
critically worn detection of pitch link are proposed.  Results show that the proposed algorithms are 
capable of detecting critical degradation of tie bar and have the ability to discriminate between 
unworn (undamaged) and worn (damaged) pitch link bearings. 
 
 
1. Introduction 
 
This report is generated by the University of Bristol to describe research work carried out in the area 
of Feature Extraction as the fourth deliverable from the Wireless Intelligent Sensing Devices 
(WISD) research project.  The University of Bristol (UB) is member of the WISD consortium, 
which other members are Westland Helicopters Ltd (WHL), TRW Conekt (TRW), and Systems 
Engineering & Assessment Ltd (SEA).  The WISD research project is supported by The Department 
of Trade and Industry (DTI). 
 
The need for robust health monitoring and prognosis of components in remote or difficult to access 
locations is driving the advancement of sensing hardware and processing algorithms.  The Wireless 
Intelligent Sensing Devices (WISD) research project aims to attend to this need.  Therefore, the 
main goal of the WISD project is to advance the development of autonomous, self-powered, 
wireless sensors with built-in intelligence, in order to provide an accurate health state and life 
prediction of engineered structures.  It is intended that a WISD will then only transmit information 
when a feature of the state of health of the monitored structure has altered and requires attention or 
maintenance.  Thus, it is expected that an array of WISDs will provide an efficient alternative to the 
current approach of streaming raw data back to a central monitoring unit.  The target application for 
the sensing system developed by the WISD project is health monitoring of the main rotor hub of a 
Lynx Helicopter. 
 
In this report the main findings of ongoing research in the area of feature extraction and statistical 
model development (pattern classification), under the context of the WISD research project, are 
presented.  Thus, in the remainder of this section some backgraond concepts are presented.  First the 
concept of structural health monitoring is reviewed, then a definition of what is considered a WISD 
is presented together with a review of data interrogation procedures used in the past in wireless 
sensor devices. Then, in section 2, after providing a short description of wavelet theory and fuzzy 
logic theory, a feature extraction algorithm referred to as the soft computing feature extraction 



 2

algorithm, which combines these two technologies, is proposed.  The results of the algorithm 
applied to tie bar data and pitch link data components of the main rotor hub of a Lynx Helicopter 
are presented in sections 3 and 4, respectively.  Finally, conclusions to this work are given in 
section 5. 
 
 
1.1 Structural health monitoring 
 
Structural health monitoring (SHM) can be defined as the process of implementing a damage 
identification strategy for aerospace, civil and mechanical engineering infrastructure [Farrar et al, 
2001].  The goal of implementing a SHM system is to improve the safety and reliability of 
engineering structures by detecting damage before it reaches a critical state.  Therefore, the process 
of implementing a SHM system involves the observation of a structure or mechanical system over 
time using periodically spaced measurements, the extraction of damage-sensitive features from 
these measurements, and the statistical analysis of these features to determine the current state of 
health of the system.  The output of this process is periodically updated information regarding the 
ability of the structure or mechanical system to continue to perform its desired function in light of 
the inevitable ageing and degradation resulting from operational environments. 
 
The implementation of a SHM system can be summarised into the four-step flow chart shown in 
figure 1 [Farrar et al, 2001] [Farrar et al, 2006].  A short description of each one of these processes 
is given below. 
 
Operational evaluation: This process defines and quantifies the damage that is to be detected and 
describes the benefits to be gained from implementing the SHM system.  This process also sets 
what unique aspects of the system will be monitored and how to perform the monitoring as well as 
specifying the features of the damage to be detected. 
 

 

OPERATIONAL EVALUATION 

STATISTICAL MODEL 
DEVELOPMENT 

DATA: 

NORMALISATION 

CLEANSING 

FUSION 

COMPRESSION 

FEATURE EXTRACTION 

DATA ACQUISITION 

 
Figure 1: Flow chart for implementing a SHM system. 

 
Data acquisition:  This component of the SHM process involves selecting the excitation methods, 
the sensor types, number and locations, and the hardware platform for data acquisition, storage, 
processing, and communication.  It is necessary to remark that the data acquisition and sensing 
systems do not measure damage.  Rather, they measure the response of a system to its operational 
and environmental loading or the response to inputs from actuators embedded with the sensing 
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system.  They deliver raw measurement data.  However, depending on the sensing technology 
selected and the type of damage to be identified, the sensor readings include features that may be 
more or less directly correlated to the presence and location of damage. 
 
Feature extraction:  Feature extraction is the process of identifying damage-sensitive information 
from measured data.  A damage-sensitive feature is some quantities extracted from the measured 
system response data that is correlated with the presence of damage in a structure [Farrar et al, 
2006].  The main objective of the feature extraction process is to extract damage-sensitive features 
that change in some consistent manner with increasing damage level.  Ultimately, the goal is to 
distinguish a damaged structure from an undamaged one based on the extracted features in a robust 
and accurate manner.  Two alternative feature extraction methods have been mainly proposed in the 
SHM literature; model based and waveform based.  The model based feature extraction method 
consists on fitting some model, either physics based or data based, to the measured system response 
data.  The parameters of these models or the predictive errors associated with these models then 
become the damage-sensitive features.  Alternatively, the waveform based approach extract features 
by directly comparing the sensor waveforms or spectra of these waveforms. 
 
Statistical model development:  This process is concerned with the implementation of the 
algorithms that analyse the distributions of the extracted features in order to determine the damage 
state of the structure.  The algorithm used to perform this task can be categorised into three types: 
(1) Group Classification, (2) Regression Analysis, and (3) Outlier Detection.  The selection of the 
appropriate algorithm to use depends on the data available.  For example, algorithms performing 
supervised learning can be applied when examples of data are available from damaged and 
undamaged structures.  If data were available only from the undamaged structure, then an algorithm 
implementing unsupervised learning would be more adequate.  The statistical models are typically 
used to answer a series of questions regarding the presence, location, type and extent of damage. 
 
Inherent in the data acquisition, feature extraction and statistical model development sections of the 
SHM process are data normalisation, cleansing, fusion and compression [Farrar et al, 2006].  Under 
the context of SHM, data normalisation is the process of separating changes in sensor reading 
caused by damage from those caused by varying operational and environmental conditions.  Data 
cleansing is the process of selectively choosing data to pass on to, or reject from, the feature 
selection process.  Data fusion is the process of combining information from multiple sensors in an 
effort to enhance the fidelity of the damage detection process.  Data compression is the process of 
reducing the dimensionality of the data, or the feature extracted from the data, in order to facilitate 
an efficient storage of information and to enhance the statistical quantification of these parameters.  
These four activities can be implemented in either hardware or software and usually a combination 
of the two approaches is used. 
 
The two processes of feature extraction and statistical model development for feature classification 
commonly are referred together to as data interrogation procedures.  They are the essential 
components of a SHM system needed to convert the sensor data into useful information about the 
structural health condition.  Furthermore, to successfully implement a SHM strategy, the data 
acquisition system will have to be developed in conjunction with these data interrogation 
procedures. 
 
 
1.2 Wireless Intelligent Sensing Devices 
 
In general terms, an intelligent sensing device includes a memory for data storage; a radio 
frequency communicator configured to receive signals from and transmit signals to an external 
device; a processor; one or more sensors; and a power supply.  The key component of a WISD is 



 4

the onboard processor, which allows the device to perform its own local data interrogation tasks, 
only transmitting the results.  Consequently, a significant reduction in power consumption is 
achieved (It has been demonstrated that one byte of data transmission consumes the same energy as 
approximately 11000 cycles of computation using low powered DSPs [Tanner et al, 2003]). 
 
The main technological advancement in a WISD is its ability to make decisions, not simply stream 
raw data.  Accordingly, the output of a WISD is a feature of the structure or a heath state indicator 
rather than raw data itself.  Furthermore, by being self-powered and equipped with a wireless 
transmitter, a WISD is able to act autonomously or be triggered remotely to provide an intelligent 
assessment of the state of health of the monitored structure. 
 
 
1.3 Feature extraction algorithms for wireless intelligent sensing devices 
 
Recently, research studies have been carried out in order to develop feature extraction algorithms 
for SHM capable of being implemented in the onboard processor of wireless intelligent sensing 
devices. Tanner et al [2003] implemented an SHM algorithm in an off-the-shelf wireless sensing 
and data processing hardware known as “Motes”, which were developed at the University of 
California, Berkeley.  The Mote system consist of modular circuit boards integrating sensors, 
microprocessor, A/D converters, and wireless transmitter all of them powered by two AA batteries 
[Kurata et al, 2005].  In the implemented SHM algorithm the cross-correlation coefficient between 
the time responses measured from two accelerometers mounted across a joint in a demonstration 
structure was used as the feature for damage detection.  Thus, damage is detected using a statistical 
process control approach [Montgomery, 2005] [Sohn et al., 2000].  Firstly, in a training phase, data 
from a known healthy condition of the structure were used to establish the upper and lower bounds 
of the statistical process control.  The control limits were set at µ ± 1.5σ, based on the cross-
correlation coefficient sample mean µ and standard deviation σ. The values of the cross-correlation 
coefficients were calculated using a recursive algorithm on the wireless sensor device and 
broadcasted to a base station connected to a PC.  After the bounds were calculated on the PC, they 
were hard-coded back onto the processor on the wireless sensor.  Secondly, in a monitoring phase, 
the cross-correlation coefficients were calculated from newly measured acceleration time signals 
and checked against the previously determined control limits to determine if any of the cross-
correlation values was an outlier.  Finally, damage is declared based on the frequency of occurrence 
of outliers.  A binary result could then either be shown on the motes’ LED or transmitted wirelessly 
to a base station.  The whole process proved to be, however, very limited, allowing only the most 
rudimentary data interrogation algorithms to be implemented and not in a completely autonomous 
operational mode. 
 
Lynch et al [2004] developed a hardware system to implement SHM algorithms using off-the-shelf 
components.  The hardware platform includes sensing circuits and a wireless transmission unit 
coupled with a computational core incorporating two microcontrollers working in a master-slave 
configuration for power efficiency.  This hardware system allows a decentralised collection, 
analysis and broadcast of a structure’s health.  The feature extraction and damage detection 
algorithm implemented in this hardware platform is the statistical time-series approach proposed by 
Sohn and Farrar [2001].  In this approach the time histories of vibration signals of the analysed 
structure in its undamaged state are measured under a variety of environmental and operational 
conditions.  Then, after normalisation, an autoregressive (AR) model of dimension p (denoted as 
AR(p)) is fitted to the measured data: 
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where yk denotes the response of the structure at sample index k, y
ib  are coefficients on the previous 

observations yk-i, and y
kr  is the AR model residual error term.  As it is assumed that the residual 

error y
kr  of the AR model is influenced by the unknown input to the system, a second time-series 

model, an autoregressive with exogenous inputs (ARX) model of dimension a and b (denoted as 
ARX(a, b)) is adopted to model the relationship between the residual error and the measured 
response of the system: 
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where iα  and jβ  are coefficients on past measurements and the residual error of the AR model, 

respectively.  The coefficients of the AR-ARX time series models and the standard deviation of the 
residual error of the fitted ARX models form a database (denoted by the superscript DB) of baseline 
models describing the structure in its undamaged state.  The residual of the ARX model, y

kε , is the 

damage sensitive feature used to detect the existence of damage in the structure. 
 
To detect damage, after measuring the response of the structure yk in an unknown state (damage or 
undamaged), an AR model is fitted. The coefficients of this AR model are then compared to the 
library of baseline AR-ARX coefficients.  The closest AR-ARX model pair is selected from the 
library based on the Euclidian distance, D, of the newly derived AR model and the database AR 
model coefficients, y

ib  and DB
ib , respectively.  This is: 
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Thus, if no structural damage is experienced and the operational conditions of the two models are 
close to one another, the selected AR model from the database will closely approximate the 
measured response.  On the contrary, if damage has been sustained by the structure, even the closest 
AR model of the database will not approximate the measured structural response well.  Therefore, 
the measured response of the structure in the unknown state, yk, and the residual error of the fitted 
AR model, y

kb , are substituted into the database ARX model to determine the residual error, ykε , of 

the ARX model: 
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If the structure is in a state of damage, the standard deviation )( y

kεσ  of the ARX model residual, 
y
kε , will vary from the standard deviation )( DB

kεσ  of the ARX model residual corresponding to the 

undamaged structure, DB
kε . In particular, damage can be identified when the ratio of the standard 

deviation of the model residual error exceeds a threshold value, h, established from good 
engineering judgment [Sohn and Farrar 2001]: 
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The statistical time-series damage detection method was implemented in the proposed wireless 
sensing unit as is shown in figure 2.  Given the memory limitations of the wireless sensing unit, 
storage of a database of AR and ARX coefficients was done using a remote data server.  The 
wireless sensing unit is primarily responsible for the determination of AR model coefficients as well 
as processing the data through the ARX model that is obtained from the remote server.  The 
wireless sensing unit, after calculating the ARX residual error, makes the ultimate decision if 
damage is potentially present in the system within the vicinity of its respective node. 
 

 
Figure 2: Implementation of the statistical time-series feature extraction and damage detection 

approach in a wireless sensor unit [Lynch et al 2004]. 
 
 
2. Soft computing feature extraction algorithm 
 
It is known that current helicopter rotors spin at near constant revolutions per minute (RPM) 
throughout a flight mission.  Consequently, it is expected that signals coming from monitored 
components of the main rotor hub will be periodic signals.  In addition, data signals provided by 
Westland Helicopters Ltd from results of fatigue testing of tie bars, components of the main rotor 
hub of a Lynx Helicopter, show a periodic (or cyclic) behaviour.  Hence, in this work it is assumed 
that the measured signals from which damage sensitive features are going to be extracted are 
periodic signals with a known period (or frequency). 
 
A feature extraction approach, referred to as soft computing feature extraction algorithm (SCFEA), 
has been proposed as part of the WISD research project in order to identify damage sensitive 
information from periodic signals.  This approach has been developed inspired on the work of Li et 
al [2004].  The SCFEA combines wavelet transform theory and fuzzy logic theory.  The general 
idea explored in the proposed approach is as follows, if a feature vector can be extracted which 
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represents the characteristics of a cycle or a series of cycles of a signal, then this feature vector can 
be used to perform comparisons with a cycle or a series of cycles of the signal obtained over 
different periods of time.  This in turn will allow the possibility to assess how the signal is evolving 
until failure is reached and this outcome can be used for pattern recognition and damage detection.  
In other words, the main postulate is that the change of the dynamic behaviour of the system being 
monitored can be expressed in terms of changes in the feature vectors extracted from every cycle 
(or series of cycles) of the measured signals and compared over time. 
 
The effective content of information in a signal is usually given in its entirety (low frequency) or at 
slight positions (high frequency).  Thus, if two signals (or cycles of a signal) are apparently 
different, then their traits can be extracted in very different features.  But, if the two signals (or 
cycles of a signal) are approximately the same, then their features should be very similar.  Hence, 
the feature of a signal to be extracted should be sensitive enough to have effective information, and 
should be robust enough to tolerate noise and distortion.  However, sensitivity and robustness are 
mutually exclusive in nature.  In that sense the discrete wavelet transform is used as a tool to 
decompose a signal into approximation and detail signals, associated with low and high frequencies. 
While, due to its ability to tolerate imprecision and uncertainty, fuzzy sets are used to provide a 
robust representation for the signal information.  The concept of fuzzy sets is used then to serve as a 
bridge between sensitivity and robustness in feature extraction for a signal.  The sensitivity in 
feature extraction of the SCFEA can be adapted by tuning or increasing the number of fuzzy sets 
defined for the detail and approximation signals.  The output of the SCFEA will be a feature vector 
that can be used for pattern classification. 
 
In the next sections the theoretical background used to develop the SCFEA is reviewed.  First, an 
overview of wavelet transform theory is given.  Then, the main concepts of fuzzy logic are 
presented.  After that, the proposed feature extraction algorithm is presented. 
 
 
2.1 Wavelet transform theory 
 
Wavelet transform theory was originally developed in the 1980s at about the same time by 
mathematicians and seismologists as a new tool for the frequency analysis of geophysical signals 
[Goupillaud et al., 1984] [Grossmann and Morlet, 1984] [Daubechies, 1988].  Over the last two 
decades, due to its many useful features, the wavelet transform has been used in a broad range of 
applications, such as seismic records analysis, image coding, electrocardiogram analysis, feature 
extraction, pattern recognition, voice processing, image processing, signal denoising, and data 
compression. 
 
The wavelet transform (WT) can be viewed as an alternative to the traditional Fourier transform 
(FT) for the analysis of signals.  Unlike the FT analysis, which employs complex exponential or 
global sine and cosine functions as the basis functions, the WT analysis uses single localised “small 
waves” or wavelets as the basis functions.  Each wavelet function, commonly referred to as basis 
wavelet or mother wavelet, is defined by two parameters: its scale (relating to frequency) and its 
position (relating to time). 
 
Although the FT has proven to be extremely valuable to analyse periodic, time-invariant, or 
stationary phenomena, the frequency spectrum of a signal as a result of the FT is not localised in 
time due to the infinite sinusoid basis functions.  This characteristic implies that the Fourier 
coefficients of a signal are determined by the entire signal support.  Consequently, any local 
behaviour of a signal cannot be easily traced from its FT.  In contrast, in WT analysis long waves, 
corresponding to larger scale values, are used for more precise low-frequency information and 
shorter waves, corresponding to smaller scale values, are used for the time locality of high-
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frequency information.  Therefore, the WT is a more suitable and powerful tool for the analysis of 
transient, time-varying, or non-stationary phenomena, as both frequency (scales) and time 
information can be obtained simultaneously from the WT of a signal.  Hence, the two theories, 
rather than competing, are complementary since there are applications where the WT analysis is 
better suited than the FT analysis and vice versa. 
 
 
2.1.1 Continuous wavelet transform 
 
The Continuous Wavelet Transform (CWT) of a function f(t) ∈ L2(R) (the space of square 
integrable functions) is defined by 
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where u,s ∈ R are real continuous variables, s ≠ 0. The continuous wavelet transform comprises the 
continuous translation and dilation of a basis function defined by: 
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where the factor s1  is used to normalise the energy so that it stays at the same level for different 

values of s and u.  The wavelet function )(, tsuψ  is expanded in time (or space) when s is increased, 

and is displaced in time (or space) when u is varied.  For this reason, s is called the scaling (or 
dilation) parameter, which captures the local frequency content, and u is called the translation (or 
shifting) parameter, which localises the wavelet basis function at time t = u and its vicinity. 
 
 
2.1.2 Discrete wavelet transform 
 
In many practical applications the CWT is discretised in the scaling and dilation parameters for 
computational efficiency.  Thus, instead of calculating the wavelet transform over the continuous 
range of s and u, the wavelet transform is calculated only at the discrete values defined by jss −= 0  

and jsnuu −= 00 .  Then, by substituting these discrete scaling and translation values in (7) it 

becomes: 
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where j, n ∈ Z (the set of all integers), s0 > 1 and u0 > 0 are fixed dilation and translation steps, 
respectively.  Note in (8) that the translation factor u0 has been made dependent on the dilation step 
s0.  Most commonly, s0 and u0 are selected in order to have a dyadic grid along the frequency and 
time axes.  This is s0 = 2, and u0 = 1.  Therefore, by substituting these values in (8) it gives: 
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Thus, any signal in L2(R) can be represented as a superposition of dyadic dilations and translations 
of a single wavelet function )(tψ  (also known as wavelet series representation), this is: 
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where the two-dimensional set of coefficients dj,n is called the Discrete Wavelet Transform (DWT) 
of f(t) and (10) is the inverse DWT.  If the functions )(, tnjψ  form an orthogonal basis for the space 

of signals of interest, then a more specific form of the DWT indicating how the dj,n’s are calculated 
can be written using the inner product operator as: 
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Recall that the inner product of two functions x(t) and y(t) is defined as: 
 

�= dttytxtytx )()()(),(      (12), 

 
and two wavelets )(, tnjψ  and )(, tkjψ  are orthogonal if their inner product is equal to zero, this is: 
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The construction of these orthogonal bases can be directly related to the theory of multiresolution 
signal approximations [Mallat, 1989].  Specifically, this leads to an equivalence between wavelet 
bases and quadrature mirror filters used in discrete multirate filter banks.  These filter banks can 
then be used to implement a fast DWT algorithm that requires only O(N) operations for signals of 
size N.  This implementation of the DWT is reviewed next. 
 
Lets consider the wavelet series representation of a square integrable function f(t) introduced in 
(10): 
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for every j ∈ Z the following functions can be defined [Coca and Billings, 2001]: 
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It follows that the function f(t) can then be expressed as: 
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But, since the scale is roughly speaking a substitute for frequency in the time domain, equation (16) 
can be interpreted as a decomposition of the function f(t) in frequency bands, where higher values 
of j correspond to higher frequency bands. 
 
If all the functions wl(t) are added together up to a scale j ⊂ Z, then a new set of functions Zjj tv ∈)}({  

can be defined as: 
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Then, for every j ∈ Z, the functions vj(t) can be substituted in (16) to obtain: 
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Continuing with the frequency band interpretation of equation (16), equation (18) can be interpreted 

in the frequency domain as a decomposition of the function )(ˆ ωf , the FT of f(t), in a low-

frequency band )(ˆ ωjv , plus additional, high-frequency bands represented by �++ + )(ˆ)(ˆ 1 ωω jj ww . 

From an approximation point of view vj(t) is a coarse approximation of the function f(t) with the 
additional, finer detail provided by the functions �++ + )()( 1 twtw jj .  The value of j which 

corresponds to the initial resolution level controls the amount of detail contained in the function vj(t) 
relative to the original function f(t). 
 
The alternative representation of f(t) given in equation (18) can be realised through the utilisation of 
a scaling basis function )(tφ  ∈ L2(R) which dyadic dilations and translations are used to expand the 
functions vj(t), for every integer j, in the same way )(tψ  is used to represent wj(t) in (15).  This 
yields the following representation of vj(t) in terms of dilating and translating the scale basis 
function: 
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where {cj,n} are the coefficients of the expansion. Consequently, substituting (15) and (19) in (18) 
the function f(t) has a new series representation in terms of scaling and wavelet functions [Coca and 
Billings, 2001] [Burrus et al., 1998]: 
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A scaling function which can be used to expand any square integrable function as in equation (20) 
for any integer j is said to generate a multi-resolution approximation over the space of square 
summable functions [Mallat, 1989] [Burrus et al., 1998]. 
 
The coefficients in the wavelet expansion (20) are called the DWT of the signal f(t).  If the 
functions )(, tnjφ  and )(, tnjψ  are orthogonal, then the j level scaling coefficients are found by taking 

the inner products: 
 

dtnttfttfc jj
njnj )2(2)()(),( 2
,, −== � φφ     (21) 

 

dtnttfttfd jj
njnj )2(2)()(),( 2
,, −== � ψψ     (22). 

 
In practice, instead of dealing directly with the scaling and wavelet functions, a method using the 
theory of filter banks has been developed to calculate the coefficients cj,n and dj,n in a recursive way.  
First, a relationship between the expansion coefficients at a lower scale level in terms of those at a 
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higher scale is derived using the basic recursion equation, also known as the multiresolution 
analysis equation [Burrus et al., 1998]: 
 

)2(2)()( ktkht
k

−=� φφ      (23) 

 
this equation states that the scaling function φ(t) can be expressed in terms of a weighted sum of 
shifted φ(2t).  Thus, by scaling and translating the time variable it gives: 
 

�� −−=−−=− +

k

j

k

jj kntkhkntkhnt )22(2)())2(2(2)()2( 1φφφ   (24) 

 
which, after defining a change of variable knm += 2 , and substituting it in (24), results in: 
 

)2(2)2()2( 1 mtnmhnt j

m

j −−=− +� φφ     (25). 

 
Then, using (25) and interchanging the sum and integral, (21) can be written as: 
 

dtmttfnmhc jj

m
nj )2(2)()2( 12)1(
, −−= ++

�� φ    (26) 

 
but the integral in (26) is the inner product with the scaling function at a scale of 1+j  giving: 
 

mj
m

nj cnmhc ,1, )2( +� −=      (27). 

 
Following the same procedure the corresponding relationship for the wavelet coefficients is 
obtained: 
 

mj
m

nj cnmgd ,1, )2( +� −=      (28). 

 
Equations (27) and (28) show that the scaling and wavelet coefficients at different levels of scale 
can be obtained by convolving the expansion coefficients at scale j by the time-reversed recursion 
coefficients h(-k) and g(-k) then down-sampling or decimating (taking every other term, the even 
terms) to give the expansion coefficients at the next level of j-1.  In other words, the scale-j 
coefficients are “filtered” by two FIR digital filters with coefficients h(-k) and g(-k) after which 
down-sampling gives the next coarser scaling and wavelet coefficients. 
 
The block diagram of figure 3 illustrates the implementation of equations (27) and (28). In this 
figure the down-pointing arrows denote a down-sampling by two and the other blocks denote FIR 
filters or equivalently a convolution by h(-k) or g(-k). 
 

 
 g(-k) 

 h(-k) 

 

    2 

 

    2 

cj+1 

dj 

cj 

 
Figure 3: Representation of the implementation of a two-band analysis filter bank. 
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The filer implemented by h(-k) is a lowpass filter, and the one implemented by g(-k) is a highpass 
filter. The filters are designed so that the impulse response of the filter g is related to the impulse 
response of the filter h by: 
 

)1()1()( 1 khkg k −−= −       (29). 
 
Equation (29) specifies that the filter g is the mirror filter of h. In signal processing, g and h are 
called quadrature mirror filters. 
 
Note that the total number of data points at the output of the filter bank is the same as the number of 
data points coming in. The number of data points is doubled by having two filters, but because the 
down-sampling, this number is halved back to the original number. If more decomposition levels 
are required, then the splitting, filtering, and decimation structure can be repeated on the scaling 
coefficients as is illustrated in figure 4. 
 

 

cj+1 

 g(-k) 

 h(-k) 

 

    2 

 

    2 

dj 

cj 

 g(-k) 

 h(-k) 

 

    2 

 

    2 

dj-1 

cj-1 

 
Figure 4: Implementation of a two-stage two-band analysis filter bank tree. 

 
For a more detailed description of filter banks and it utilisation to implement the DWT the reader is 
referred to [Burrus et al., 1998], [Mallat, 1989], and [Strang and Nguyen, 1997]. 
 
 
2.2 Fuzzy logic theory 
 
Imprecision and uncertainty are inherent concepts to the inexact nature of human reasoning.  As a 
result, our way of interpreting the world is generally seen as a function of vague propositions, 
uncertain data and appreciative judgements. However, this way of thinking is not taken into account 
in traditional logic, where only two fundamental premises exist: true and false, 0 and 1.  Lotfi A. 
Zadeh noticed this and created a new logic, called fuzzy logic [Zadeh, 1973], in order to attempt to 
capture the uncertainty present in our reasoning when interpreting the world.  This logic is based on 
the theory of fuzzy sets proposed by Zadeh [1965] in his seminal paper of 1965.  The main concept 
in fuzzy sets theory is that an object is no longer restricted to be completely a member or not a 
member of a set.  Instead, any element is allowed to have a grade of membership intermediate 
between full membership and non-membership, this is a membership value in the whole range [0,1].  
In other words, whereas in traditional sets theory a set has sharp borders, in fuzzy sets theory a 
fuzzy set has soft borders allowing an object a smooth transition between being a member or not a 
member of a particular set.  This smooth transition is characterised by a membership function, 
which gives fuzzy sets flexibility in modelling commonly used linguistic expressions, such as “the 
temperature is high”, or “the speed is fast”. 
 
Formally, a fuzzy set is defined as follows. Let X be a universe of discourse (e.g. a space of points 
or objects) and x denote a generic element of X.  Then, a fuzzy set A in X is characterised by a 
membership function ]1,0[: →XAµ  which associates with each element x of X a real number 
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)(xAµ  in the interval [0,1], with the value )(xAµ  representing the degree (or grade) of membership 
of x in A [Zadeh, 1977b].  Thus, a fuzzy set A in X can be represented as the set of ordered pairs: 
 

{ }XxxxA A ∈= |))(,( µ      (30) 
 
where 1)(0 ≤≤ xAµ , with 0)( =xAµ  represents no membership and 1)( =xAµ  represents full 
membership.  As an example, let X consist of the ages of all people.  Three fuzzy subsets of X, 
Young, Middle aged, and Old, are shown in figure 5 representing those people that are young 
middle aged and old, respectively.  Hence, these membership functions determine that a 30-years-
old person belongs equally to the fuzzy sets Young and Middle Aged, but she or he does not belong 
to the fuzzy set Old. 
 

 
 5.0)30( =Youngµ   5.0)30( =AgedMiddleµ    0)30( =Oldµ  

 
Figure 5: Fuzzy sets defined to represent the age of people. 

 
Similarly to traditional set theory, the corresponding basic operations of intersection, union, and 
complement, are defined in fuzzy logic. The operations of intersection and union are specified in 
general by a T-norm and a T-conorm operator, respectively [Jang et al, 1997]. Below, the two more 
frequently used T-norm and T-conorm operators are presented. 
 

1. Intersection:  The intersection of two fuzzy sets A and B is a fuzzy set C, denoted as C = 
A∩B, whose membership function is related to those of A and B by: 

 
Minimum: ))(),(min()()( xxxx BABAC µµµµ == ∩    (31) 

Algebraic product: )()()()( xxxx BABAC µµµµ ⋅== ∩     (32) 

 
 

2. Union:  The union of two fuzzy sets A and B is a fuzzy set C, denoted as C = A∪B, whose 
membership function is related to those of A and B by: 

 
Maximum: ))(),(max()()( xxxx BABAC µµµµ == ∪    (33) 

Algebraic sum:      )()()()()()( xxxxxx BABABAC µµµµµµ ⋅−+== ∪         (34) 

 
3. Complement (negation):  The complement (negation) of fuzzy set A, denoted by A , is 

defined as: 
 

)(1)( xx AA µµ −=       (35) 
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Examples of these basic operations are presented in figure 6. 
 

 

   Fuzzy intersection Fuzzy union  Fuzzy complement 
 

 

Minimum Maximum 

Algebraic product Algebraic sum 

 
Figure 6: Basic operations on fuzzy sets. 

 
Other important operations in fuzzy sets, which are also direct generalisations of operations on 
ordinary sets are: 
 

4. Cartesian product:  Let A and B be fuzzy sets in X and Y, respectively. The Cartesian 
product of A and B, denoted by A×B, is a fuzzy set in the product space X×Y with the 
membership function: 

 
Minimum:  ))(),(min(),( yxyx BABA µµµ =×   (36) 

Algebraic product:  )()(),( yxyx BABA µµµ ⋅=×    (37) 
 
The Cartesian product of two fuzzy sets is characterised by a two-dimensional membership 
function.  Figure 7 shows an example of a two-dimensional membership function generated by 
performing the Cartesian product of two fuzzy sets using the algebraic product operator.  The same 
figure also shows the contour plot generated by the two-dimensional membership function. 
 

 

  )(xAµ   
  )(yBµ   

  )()(),( yxyx BABA µµµ ⋅=×
   

 
 

Figure 7: Cartesian product using the algebraic product operator. 
 

5. Binary fuzzy relation:  Let A and B be two fuzzy sets in the universes of discourse X and Y, 
respectively.  Then, a fuzzy relation of the form BA	 , denoted by R, from the fuzzy set 
A⊂X to the fuzzy set B⊂Y, is a fuzzy subset of the Cartesian product X×Y.  This is: 
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YXyxyxyxR R ×∈= ),(|)),(),,{(( µ     (38) 
 

where ),( yxRµ  is a two-dimensional membership function, characterised by: 
 

Minimum:  ))(),(min(),(),( yxyxyx BABAR µµµµ == ×   (39) 

Algebraic product:  )()(),(),( yxyxyx BABAR µµµµ ⋅== ×    (40) 
 
Common examples of fuzzy relations are expressions of the form “If x is A, then y is B”, e.g. “If x is 
large then y is small”.  Fuzzy relations of this kind are repeatedly used in fuzzy inference systems. 
 
Fuzzy relations in different product spaces can be combined through a composition operation.  
Different composition operations have been suggested for fuzzy relations, depending on the 
operator selected to perform the fuzzy intersection and union operations.  The two most popular 
composition operations are the max-min and max-product, which are presented below. 
 

6. Max-min composition:  Let R1 and R2 be two fuzzy relations defined on X×Y and Y×Z, 
respectively, Then, the max-min composition of R1 and R2 is a fuzzy set defined by: 

 
},,|))],(),,(min(max),,{[(

2121 ZzYyXxzyyxzxRR RR
y

∈∈∈= µµ� ,  (41) 

 
which is characterised by the membership function defined by: 

 
)),(),,(min(max),(

2121
zyyxyx RR

y
RR µµµ =

�
    (42) 

 
7. Max-product composition:  Assuming the same notation as used in the definition of the 

max-min composition, the max-product composition is defined as follows: 
 

},,|))],(),((max),,{[(
2121 ZzYyXxzyyxzxRR RR

y
∈∈∈⋅= µµ�   (43) 

 
characterised by the membership function: 

 
)),(),((max),(

2121
zyyxyx RR

y
RR µµµ ⋅=

�
    (44). 

 
Another important concept in fuzzy logic theory is the concept of linguistic variable.  A linguistic 
variable is a device for systematising the use of words or sentences, expressed in a natural or 
artificial language, for the purpose of characterising the values of variables and describing their 
interrelations [Zadeh, 1977].  As its name suggest, the values of a linguistic variable are words or 
sentences, rather than numbers.  Each linguistic value is a label of a fuzzy set, defined by a 
membership function with gradual transition between full membership and non-membership 
[Zadeh, 1965].  In formal terms: 
 

8. Linguistic variable:  A linguistic variable is characterised by a quintuple (x, T(x), X, G, M) 
in which x is the name of the variable; T(x) is the term-set of x , that is, the collection of its 
linguistic values (or linguistic terms); X is a universe of discourse; G is a syntactic rule 
which generates the terms in T(x); and M is a semantic rule which associates with each 
linguistic value A its meaning, M(A), where M(A) denotes a fuzzy subset of X.  The meaning 
of a linguistic value A is characterised by a membership function, µA : X → [0, 1], which 
associates with each x in X a degree of membership in A. 
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The concept of linguistic variable can be applied to signal analysis.  For example, the magnitude of 
a signal can be viewed as a linguistic variable, whose linguistic values are given in the term set 
T(Magnitude) = (very small; small; medium; big; very big).  A graphical representation of the 
linguistic variable “Magnitude” is shown in figure 8. 
 

 
Figure 8: Linguistic variable Magnitude 

 
The concepts of fuzzy logic and linguistic variable can be used as a framework to encode structured 
knowledge in what is known as fuzzy associative memory [Kosko, 1992] [Brown and Harris, 1994] 
(also referred to as fuzzy inference system [Jang et al, 1997]), which can be defined as follows: 
 

9. Fuzzy associative memory: A Fuzzy associative memory (FAM) is a rule-based system 
based on fuzzy sets and fuzzy logic.  An FAM system encodes a bank of compound FAM 
rules that associate multiple inputs or antecedent fuzzy sets with multiple outputs or 
consequent fuzzy sets.  An FAM rule defines an input-output transformation expressed as a 
logical if-then statement such as, “if this antecedent (group of fuzzy input sets) occurs, then 
this consequent (fuzzy output set) should be used”. 

 
The knowledge in an FAM is encoded as a set of fuzzy rules and a fuzzy inference algorithm 
applied to these rules.  For example, consider the following single input, single output FAM system, 
which has three triangular membership functions defined on each variable that represents the 
linguistic terms small, medium, and large: 
 

FAM fuzzy rules 
        If x is small, then y is small 
OR  If x is medium, then y is medium 
OR  If x is large, then y is large 

 
Each fuzzy rule can be coded as a fuzzy relation, which is characterised by a two-dimensional fuzzy 
set.  The combination of all three fuzzy rules through a composition operator generates a fuzzy 
relational surface.  Figure 9 shows the fuzzy relational surface generated for the FAM system 
described above using the max-product composition.  Note that the each peak in the relational 
surface corresponds to each one of the three fuzzy rules, and that a contour or fuzzy region in the x-
y plane can be associated to each fuzzy rule. 
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Figure 9: Example of a fuzzy relational surface for a single input, single output FAM system. 

 
Fuzzy inference systems (FAMs), and in general fuzzy logic, has found successful applications in a 
wide variety of fields, such as automatic control, data classification, decision analysis, expert 
systems, time series prediction, robotics, and pattern recognition. 
 
 
2.3 Feature extraction algorithm 
 
The stages involved in the SCFEA [Li et al., 2004] are summarised in the flow chart shown in 
Figure 10. A description of each one of these stages is given below. 
 
 

Signal 
Discrete 
Wavelet 
Transform 

Feature Vector Normalisation 
cA1 

cD1 

Fuzzy 
Associative 
Memory 

Accumulated 
Firing Strengths 
Vector 

Normalisation 

 
Figure 10: Flow chart of the SCFEA. 

 
Normalisation input.  The incoming signal f(t) is normalised before performing discrete wavelet 
transform as follows: 
 

))((max(
)(

)(
~

tfabs

tf
tf =      (45). 

 
After normalisation the incoming sampled values of the given signal are between the range [-1,1]. 
Note, that the normalisation is performed over a cycle or a given number of cycles of the incoming 
signal. 
 
Discrete wavelet transform.  Using the multi-resolution method described in Section 2.1.2 to obtain 
the DWT [Burrus et al., 1998], the normalised signal is decomposed to its approximation and detail 
signals, denoted here as cA1(t), and cD1(t), respectively.  The approximation signal contains the 
high-scale, low-frequency components of the original signal, while the detail signal contains the 
low-scale, high-frequency components of the original signal.  Note that only one level DWT 
decomposition is performed, indicated by the subscript 1. 
 
Fuzzy associative memory.  The obtained approximation and detail signals can be interpreted as two 
linguistic variables.  The values of these linguistic variables can then be described using fuzzy sets 
and identified using linguistic labels e.g. very small, small, medium, big, etc. Each fuzzy set 
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(linguistic value) is defined by a membership function with gradual transition between full 
membership and non-membership.  By combining the fuzzy sets among the universes of discourse 
for the approximation and detail signals, a two dimensions linguistic approximation-detail 
hyperspace is created.  The hyperspace can be interpreted as the fuzzy-wavelet feature plane.  
Several fuzzy regions cover this feature plane, each of which is associated with a two-dimensional 
fuzzy set.  These fuzzy sets combinations form a set of fuzzy rules or fuzzy associations and all 
together form a fuzzy associative memory (FAM).  Therefore, the data of discrete approximation 
and detail signals can be scattered on the feature plane.  Each data of approximation-detail pair has 
its membership degrees to the fuzzy sets on the plane.  Therefore, by evaluating each FAM rule, 
each approximation-detail pair activates or “fires” a fuzzy region to a different degree. 
 
In formal terms, lets define the linguistic variables xA and xD to represent the approximation and 
detail signals cA1(t) and cD1(t), respectively, obtained from a single level DWT decomposition.  
These two variables are used as linguistic input variables to the SCFEA.  The corresponding 
linguistic value sets for xA and xD are given by, 
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where TA and TD are the term sets for the approximation and detail signals, respectively; iA,ν  and 

jD,ν , i = 1,2,…,nA and j = 1,2,…,nD are linguistic values for xA and xD, respectively; nA and nD are 

the number of linguistic values for TA and TD, respectively.  The corresponding membership 
function sets can then be denoted as follows: 
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where 

iA,νµ  and 
jD ,νµ  are the ith membership function and the jth membership function for xA and 

xD, respectively, cA and cD are the base variables for xA and xD, respectively.  The relationship 
between the linguistic value set and the membership function set is expressed as: 
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where ))(( tcASA  and ))(( tcDSD  are the fuzzy set structures for the linguistic variables xA and xD, 

respectively. The symbol ⊗ represents the major Cartesian product operator, and it associates in a 
one-to-one way the elements of the two sets.  The fuzzy set structures ))(( tcASA  and ))(( tcDSD  
together form the fuzzy basis set denoted by: 
 

))}(()),(({))(( tcDStcAStCS DA=      (49) 
 

where TtcDtcAtC )]()([)( =  is the crisp (not fuzzy) input vector to the fuzzy feature plane at time t. 
 
Fuzzy regions on the plane xA - xD are formed by performing fuzzy associations (or fuzzy relations) 
between the fuzzy sets in ))(( tcASA  and ))(( tcDSD .  These associations are defined by the 

Cartesian product ))(())(( tcDStcAS DA × .  The number of fuzzy regions nR on the feature plane is 

determined by the cardinalities of ))(( tcASA  and ))(( tcDSD , this is nR= nA×nD. Each fuzzy region 
is thus defined as a fuzzy relation of two fuzzy sets selected from the basis set S(C(t)).  In general, 
each fuzzy set structure provides one fuzzy set for each fuzzy region.  Thus, each region is 
generated by associating each fuzzy set in ))(( tcASA  with each fuzzy set in ))(( tcDSD , this is: 
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Therefore, the ith, jth fuzzy region can be defined as: 
 

))(()))}((,())),((,{())}(()),(({)))((( ,,,,,,, ,,
tCVtcDtcAtcDStcAStCSR jijijDiAjDiAji jDiA

µµνµν νν ⊗===  

…(51) 
 
where ),( ,,, jDiAjiV νν=  is the fuzzy region linguistic value set for the ith, jth fuzzy region Ri,j on the 

feature plane, and )))(()),((())((
,,, tcDtcAtC
jDiAji νν µµµ =  is the corresponding fuzzy region 

membership function set.  Hence, a firing condition for the ith, jth region on the feature plane can 
be expressed in linguistic terms as a fuzzy rule: 
 

“Region Ri,j is activated if (xA is iA,ν  and xD is jD,ν )”   (52) 

 
Note that the condition (xA is iA,ν  and xD is jD,ν ) can be represented as a two-dimensional fuzzy set 

obtained by performing the Cartesian product between the corresponding membership functions.  
The combination of all the two-dimensional fuzzy sets (fuzzy rules) through a composition operator 
generates a fuzzy relational surface or FAM.  Figure 11 shows an example of a feature plane and 
relational surface generated for a system with three fuzzy sets defined for the linguistic variables xA 
and three fuzzy sets defined for the linguistic variables xD.  The surface was generated using the 
max-product composition operator. 
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Figure 11: Feature plane generated using the max-product composition operator. 

 
The firing strength or degree of activation of the ith, jth fuzzy region on the feature plane is given 
by, 
 

)))((())(,( ,,, tCSRt jijiji ∧=βχ      (53), 

 
where ∧ is the fuzzy intersection operator, which can be any t-norm operator; )( ,, jiji V∧χ  is the 

firing condition stated as “ jDDiAA xx ,, νν =∧= ”; and ji,β  is the firing strength calculated as: 

 
))(())(()))(((

,,,, tcDtcAtC
jDiAjiji νν µµµβ ∧=∧=    (54). 

 
Adopting the algebraic product as the t-norm operator, then the firing strength will be given by: 
 

))(())((
,,, tcDtcA

jDiAji νν µµβ ⋅=     (55). 

 
Equation (55) states that the degree in which the fuzzy region Ri,j is activated (fired) is given by 
multiplying the degree in which the data point cA(t) is member of the fuzzy set iA,ν  by the degree in 

which the data point cD(t) is member of the fuzzy set jD,ν .  Therefore, if a data pair (cA1(t), cD1(t)) 

is corresponding to (cA(t), cD(t)), then this data pair will fire or activate in some degree each one of 
the fuzzy regions in the feature plane, value obtained applying (55). 
 
Accumulated firing strength vector.  Assuming that the original signal f(t) is sampled and there are 
N0 data points among a cycle, remember that f(t) has been assumed to be a periodic (cyclic) signal 
and it is processed cycle by cycle, then after performing one level DWT decomposition, as defined 
in section 2.1.2 both the approximation and detail signals will have 2/0N  data points.  Each 

approximation-detail pair (cA1(t), cD1(t)), t= 1,2,…, 2/0N  will have its firing strength or degree of 

membership to each one of the fuzzy regions on the feature plane.  Thus, the accumulated firing 
strength for the ith, jth fuzzy region can be written as, 
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After processing al data pairs {(cA1(t), cD1(t)), t= 1,2,…, 2/0N }, the accumulated firing strengths 

for the fuzzy regions on the feature plane are collected together to form the feature vector for a 
cycle of the signal f(t).  The feature vector can then be expressed as: 
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Normalisation output.  Finally, the feature vector (57) is normalised to a unit vector in order to 
minimise the sampling effect [Li et al., 2004].  In mathematical terms the normalisation to a unit 
vector is given by, 
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The normalised feature vector (58) is the output of the SCFEA. 
 
 
3 Soft computing feature extraction algorithm applied to tie bar data 
 
In this section feature extraction results are presented corresponding to the SCFEA applied to 
extract damage-sensitive information from measured response data of the tie bar system component 
of the main rotor hub of a Lynx Helicopter.  These results correspond to data gathered in six tests 
where several tie bars have been subjected to high level ground-air-ground (G-A-G) cyclic load 
testing until failure.  As the signals obtained from the tests have a cyclic behaviour, feature vectors 
are extracted for every cycle on these signals, among each test.  Having available the feature 
vectors, a comparison analysis is performed by calculating the angle and Model Assurance Criteria 
(MAC) between a selected reference feature vector and the remaining extracted feature vectors.  In 
this way, the dynamic behaviour of the tie bars before the point of failure is expressed in terms of 
the variation of the extracted feature vectors over time and when compared to a reference feature 
vector.  Results of feature extraction and comparison analysis are presented by test and by tie bar.  
From the comparison analysis it is clear that a pattern emerges in the data corresponding to the tie 
bar that has failed. 
 
Tests of several tie bars were carried out by Westland in a purpose built test rig.  Two tie bars were 
installed back to back in the test rig.  Then cyclic twist and axial loads were applied to the tie bars 
simulating a high level G-A-G cycle load, and tested until failure, with varying results [Gorton, 
2006].  Table I summarises the tests carried out and corresponding results.  Note that a test is 
carried out until one of the tie bars fails (with an exception in test 5, were no failure was reached).  
The axial load (kN), the angle of twist (degrees), and the two tie bar extension displacements (mm) 
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were the parameters measured, constantly monitored and recorded on a digital chart recorder and 
stored in computer files.  Therefore, soft computing feature extraction and comparison analysis has 
been carried out for each one of the measured parameters.  This analysis has been carried out both 
by test and by tie bar and results are presented in the next sections. 
 

Table I:  Summary of the test completed 
 

Test 
No. 

Tie Bar 
Serial No. 

Previous Usage 
(Flight Hours+cycles) 

Tensile Load 
(KN) 

Cycles 
Completed 

Remarks 

AET7119 671.3 FH  1 
LJA0404 519.0 FH  

-1.0 to 330.6 216 
Failed 

AET7119 671.3 FH+216 cyc.  2 
BAH4263  

-1.0 to 330.6 778 
Failed 

AET7119 671.3 FH+994 cyc. Failed 3 
AEX5714 884.7 FH 

+0.7 to 330.6 7026 
 

LJA0399  Failed 4 
AEX5714 884.7 FH+7026 cyc. 

+0.7 to 330.6 1296 
Unfailed 

LK0034 0 FH Lord Corp. Man. 5 
LK0046 0 FH 

+0.4 to 285/290 24485 
Lord Corp. Man. 

LJA0401 69.4 FH  6 
LJA1440 0 FH (New) 

+0.7 to 285/290 
+0.7 to 330.6 

18553 
+3120 Failed 

LJA0401 69.4 FH+21673 cyc. Failed 7 
LJA2061 0 FH (New) 

+0.7 to 330.6 3845 
Unfailed 

  
 
 
3.1 Algorithm implementation 
 
The SCFEA presented in section 2.3 was implemented in the MATLAB/Simulink simulation 
environment.  First the process of normalisation is carried out by implemented equation (45). After 
normalisation, the DWT given in Section 2.1.2 was implemented using the Haar wavelet (the 
simplest wavelet) decomposition filter [Daubechies, 1992].  The approximation-detail data pairs 
(cA1(t),cD1(t)) obtained from a single level DWT are used then for feature extraction with the fuzzy 
logic based approach as given in Section 2.3. 
 
Two linguistic variables are defined xA and xD to represent the approximation and detail signals 
(cA1(t),cD1(t)), respectively.  The corresponding base variables are denoted as cA and cD for xA and 
xD, respectively.  The linguistic value sets TA and TD and the corresponding membership functions 
for xA and xD are given as follows: 
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Thus, six fuzzy sets were defined for xA (associated with the approximation signal cA1) and four 
fuzzy sets were defined for xD (associated with the detail signal cD1).  The fuzzy sets terms mean: 
NB = Negative Big, NM = Negative Medium, NS = Negative Small, PS = Positive Small, PM = 
Positive Medium, and PB = Positive Big.  The associated membership functions were defined using 
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triangular functions as is shown in figure 12.  The two-dimensional hyperspace or FAM generated 
by combining the fuzzy sets for the approximation and detail signals is shown in figure 13 together 
with the generated feature plane. 
 
Each one of the rules generated by combining the fuzzy sets for the detail and approximation 
signals is listed in figure 14(a).  As shown in figure 13, each rule defines a fuzzy region in the 
feature plane; the identification of these fuzzy regions with the corresponding fuzzy rule number is 
given in figure 14(b). 
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Figure 12: Universes of discourse and membership functions for the approximation and detail 

signals. The Greek symbol µ is used to represent the degree of membership value. 
 

 
Figure 13: Two-dimensional hyperspace or FAM generated by combining the fuzzy sets for the 

approximation and detail signals using the max-product composition. 
 
 
3.2 Feature extraction and comparison analysis results 
 
In this section results from feature extraction and comparison analysis are presented both by test 
and by tie bar for each one of the measured parameters for tests 2 to 7 (the analysis was not carried 
out for test 1 due that data results for this test were not provided).  Note that a feature vector was 
extracted for every cycle of a given signal. 
 
In order to perform comparison between extracted feature vectors, two measures were defined. The 
angle between two vectors x and y is defined as: 
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and the Model Assurance Criterion (MAC) value is defined as: 
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Rules 

 

R1: Region 1 is activated if (cA1 is NB and cD1 is NB) 
R2: Region 2 is activated if (cA1 is NB and cD1 is NS) 
R3: Region 3 is activated if (cA1 is NB and cD1 is PS) 
R4: Region 4 is activated if (cA1 is NB and cD1 is PB) 
R5: Region 5 is activated if (cA1 is NM and cD1 is NB) 
R6: Region 6 is activated if (cA1 is NM and cD1 is NS) 
R7: Region 7 is activated if (cA1 is NM and cD1 is PS) 
R8: Region 8 is activated if (cA1 is NM and cD1 is PB) 
R9: Region 9 is activated if (cA1 is NS and cD1 is NB) 
R10: Region 10 is activated if (cA1 is NS and cD1 is NS) 
R11: Region 11 is activated if (cA1 is NS and cD1 is PS) 
R12: Region 12 is activated if (cA1 is NS and cD1 is PB) 
 

 
 

R13: Region 13 is activated if (cA1 is PS and cD1 is NB) 
R14: Region 14 is activated if (cA1 is PS and cD1 is NS) 
R15: Region 15 is activated if (cA1 is PS and cD1 is PS) 
R16: Region 16 is activated if (cA1 is PS and cD1 is PB) 
R17: Region 17 is activated if (cA1 is PM and cD1 is NB) 
R18: Region 18 is activated if (cA1 is PM and cD1 is NS) 
R19: Region 19 is activated if (cA1 is PM and cD1 is PS) 
R20: Region 20 is activated if (cA1 is PM and cD1 is PB) 
R21: Region 21 is activated if (cA1 is PB and cD1 is NB) 
R22: Region 22 is activated if (cA1 is PB and cD1 is NS) 
R23: Region 23 is activated if (cA1 is PB and cD1 is PS) 
R24: Region 24 is activated if (cA1 is PB and cD1 is PB) 
 

 

       Fuzzy  Regions 
 

P B  R 4  R 8  R 1 2  R 1 6  R 2 0  R 2 4  

P S  R 3  R 7  R 1 1  R 1 5  R 1 9  R 2 3  

N S  R 2  R 6  R 1 0  R 1 4  R 1 8  R 2 2  

N B  R 1  R 5  R 9  R 1 3  R 1 7  R 2 1  

 
 
 
c D 1  

 

N B  N M  N S  P S  P M  P B  
 

                                    c A 1  

 

 
Figure 14: (a) Rules generated by combining the fuzzy sets for the detail and approximation 

signals. (b) Fuzzy regions and corresponding fuzzy rule number. 
 
Therefore, if a periodic (cyclic) signal is not changing over time and a feature vector is extracted for 
every cycle of the signal, then the angle between two feature vectors corresponding to two cycles of 
the signal taken at different periods of time should be near to zero (and the MAC value should be 
near to one).  Furthermore, if a cycle is taken as a reference signal and its corresponding feature 
vector is compared with the feature vectors extracted from cycles ahead in time, then in addition to 
the angles being near to zero the variation of the angle values should be small as well.  On the 
contrary, if the signal is changing over time, e.g. the signal amplitude is bigger and bigger at each 
consecutive cycle, then this change will be indicated by a growing angle value (and a decreasing 
MAC value) between the reference feature vector and the feature vectors corresponding to cycles 
ahead in time. 
 
First, examples of two cycles of the measured signals and their corresponding extracted feature 
vectors are shown in figure 15.  Both cycles are from measurements taken in test 3.  The 
comparison analysis results are presented in the next sections. 
 
 
3.2.1 Comparison analysis by test 
 
In this section the results from a comparison analysis performed by test are presented.  A 
comparison analysis by test is performed by selecting a reference feature vector and calculating the 
angle and MAC values when it is compared with the remaining feature vectors among a test.  This 
will produce two curves referred to as angle feature vector comparison analysis curve and MAC 

(a) 

(b) 
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feature vector comparison analysis curve, respectively.  Therefore, 12 comparison analyses are 
presented, corresponding to feature extraction vectors obtained for tests 2 to 7. In all of these 
comparison analyses the feature vector corresponding to cycle number 100 has been selected as the 
reference feature vector.  This cycle number is selected considering that a warming up process may 
be present at the start of each test and 100 cycles are enough for the test responses to settle down.  
In addition, it is assumed that the signals obtained in this cycle are representative of the signals 
obtained for the undamaged state of the corresponding tie bars. Figures 16 to 21 show the feature 
vector comparison analysis curves corresponding to tests 2 to 6. Note that, as the tests were 
performed over a pair of tie bars, the term TB1 refers to tie bar 1 and the term TB2 refers to tie bar 
2.  The serial numbers of the corresponding tie bars under test and identified as TB1 and TB2 are 
indicated in each figure. 
 

 
 

 
Figure 15: (a) Measured signals at cycle 10 and (b) corresponding feature vectors. (c) Measured 
signals at cycle 7015 and (d) corresponding feature vectors.  Both cycles are from measurements 

taken in test 3. 
 

(a) (b) 

(c) (d) 
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Figure 16: Test 2, TB1=AE7119, TB2=BAH4263, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 
 

 
Figure 17: Test 3, TB1=AE7119, TB2=AEX5714, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 
 

 
Figure 18: Test 4, TB1=LJA0399, TB2=AEX5714, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 19: Test 5, TB1=LK0034, TB2=LK0046, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 

 
Figure 20: Test 6, TB1=LJA0401, TB2= LJA1440, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 
 

 
Figure 21: Test 7, TB1=LJA0401, TB2= LJA2061, (a) angle feature vector comparison analysis 

curve, (b) MAC feature vector comparison analysis curve. 
 

(a) (b) 

(a) (b) 

(a) (b) 
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3.2.2 Comparison analysis by tie bar 
 
In this section the results from the comparison analysis performed by tie bar are presented.  A 
comparison analysis by tie bar of the extracted feature vectors is performed considering individual 
tie bars among all the tests.  Note from Table I that several of the tie bars are used only in one test, 
thus its comparison analysis by tie bar is the same as the corresponding comparison analysis by test, 
which means that their results have already been presented in the previous section.  The tie bars 
which comparison analysis by tie bar is the same as the comparison analysis by test are listed 
below: 
 
Comparison analysis for tie bar BAH4263 is the same as that for test 2, shown in Figure 16. 
Comparison analysis for tie bar LJA0399 is the same as that for test 4, shown in Figure 18. 
Comparison analysis for tie bar LK0034 is the same as that for test 5, shown in Figure 19. 
Comparison analysis for tie bar LK0046 is the same as that for test 5, shown in Figure 19. 
Comparison analysis for tie bar LJA1440 is the same as that for test 6, shown in Figure 20. 
Comparison analysis for tie bar LJA2061 is the same as that for test 7, shown in Figure 21. 
 
Hence, only three tie bars were employed in more than two tests.  In order to appreciate the change 
in the feature vectors over the whole utilisation of these tie bars, a comparative analysis is 
performed taken as reference the feature vector extracted from cycle 100 and comparing it with the 
remaining feature vectors for the whole utilisation of the tie bars. 
 
The comparison analysis for tie bar AET7119 is the combination of test 2 and test 3 and it is shown 
in figure 22. 
 
The comparison analysis for tie bar AEX5714 is the combination of test 3 and test 4 and it is shown 
in figure 23. 
 
Finally, the comparison analysis for tie bar LJA0401 is the combination of test 6 and test 7 and it is 
shown in figure 24. 
 

 
Figure 22: TB1=AET7119, (a) angle feature vector comparison analysis curve, (b) MAC feature 
vector comparison analysis curve.  The first 778 cycles correspond to test 2, while the next 7026 

cycles correspond to test 3. 
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Figure 23: TB2= AEX5714, (a) angle feature vector comparison analysis curve, (b) MAC feature 
vector comparison analysis curve.  The first 7026 cycles correspond to test 3, while the next 1296 

cycles correspond to test 4. 
 
 

 
Figure 24: TB1= LJA0401, (a) angle feature vector comparison analysis curve, (b) MAC feature 
vector comparison analysis curve. The first 8307 cycles correspond to test 6, while the next 3845 

cycles correspond to test 7. 
 
 
3.3 Analysis of results 
 
The idea of performing a comparison analysis is to look at the dynamic behaviour of the tie bars 
when approaching failure through looking at the changing behaviour of the feature vectors over 
time.  Thus, from the analysis of figures 16 to 24 several observations can be made.  These 
observations are made considering the angle as comparison measure, while similar interpretations 
can be made using the MAC value as comparison measure: 
 

1. A clear pattern when approaching failure can be appreciated in the comparison analysis 
curves corresponding to the change of extracted feature vectors from displacement signals of 
tie bars AET7119, LJA0399, LJA1440, and LJA0401, corresponding to analysis results of 
tests 3, 4, 6 and 7, respectively. This pattern emerges as a fast increment (resembling a 
monotonically increasing function) in the angle values between the reference feature vector 
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from an undamaged condition, extracted from a displacement cycle in an early stage of the 
test, and the feature vectors extracted from displacement signal cycles approaching the point 
of failure later in time.  This pattern also can be observed as a markedly change in the slope 
of the curve representing the angle values between the reference feature vector and the 
feature vectors corresponding to displacement cycles near the point of failure.  This change 
in slope is more drastic in tests 3 and 6 than the observed in tests 4 and 7. 

2. The comparison analysis curves corresponding to the displacement signals for tie bars 
AET7119 and LJA1440 in tests 3 and 6 resemble step functions near the point of failure.  
On the other hand, the comparison analysis curves corresponding to the displacement 
signals for tie bars LJA0399 and LJA0401 in tests 4 and 7 resemble exponential functions 
near the point of failure. 

3. By inspecting the angle feature vector comparison analysis curve, it can be said that, while 
the dynamic behaviour of the tie bars looks linear far from the point of failure, this 
behaviour shifts to a non-linear behaviour near the point of failure. 

4. For the case of test 2 and tie bars AET7119 and BAH4263, no appreciable pattern can be 
appreciated in the comparison analysis results for the displacement signals.  However, a 
high variability is observed on the angle values obtained when the comparison analysis is 
performed, meaning that a high variability exists in the feature vector values extracted from 
the displacement signals.  In addition, it is noticed in this test that the extracted feature 
vectors, corresponding to the axial load cyclic signal, slowly but constantly change over 
time.  This means that the amplitude of the applied axial load signal was also changing over 
the test. 

5. For the case of test 5 and tie bars LK0034 and LK0046, even though none of them failed, a 
pattern is clearly appreciated in the feature vectors corresponding to the displacement 
signals of tie bar LK0046.  This behaviour is similar to that observed in tie bars LJA0399 
and LJA0401, where an exponential-like curve of the angle comparison analysis curve is 
appreciated.  This may mean that tie bar LK0046 was near the point of failure when the test 
was stopped. 

6. The same patterns explained in the points 1 to 4 above can be appreciated in the comparison 
analysis by tie bar plots. 

7. In was noted that some of the tests had been interrupted and then reinitiated maintaining the 
same tie bars under tests.  These interruptions are captured by the feature extraction 
algorithm and reflected in the form of transients in the displacement comparison analysis 
curves.  When looking directly to the corresponding original data plots, it is observed that 
these results are obtained because the initial cycles of the restarted tests are distorted and, 
therefore, quite different from the reference cycles. 

8. Although the dynamic behaviour of the tie bars near the point of failure has similarities, e.g., 
a monotonically increasing angle feature vector comparison analysis curve and non-
linearity, their dynamic behaviour is quite different and particular to each tie bar, e.g. each 
one fails at a different number of cycles. 

9. From the comparison curves, it is observed that small variations in the axial load have a big 
impact in the displacement signal response. 

 
 
3.4 Validation of the SCFEA 
 
In this section the proposed SCFEA is validated using an adaptive neuro-fuzzy inference system 
(ANFIS) network [Jang et al., 1997].  The validation process consists in performing system 
identification of the unknown system, the analysed tie bar, employing an ANFIS network using a 
set of available input-output patterns, e.g. twist and axial load measurements as inputs and 
displacement measurements as output, as is illustrated in figure 25(a). The structure of the 
employed ANFIS network is shown in figure 25 (b).  Once the ANFIS network has been trained, it 
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is used to predict the output of the system for the unseen input patterns.  Therefore, the root mean 
square error (RMSE) value is calculated for every cycle of the input signals.  These results are 
plotted to obtain a RMSE evolution curve.  This curve and the angle evolution curve from the soft 
computing feature extraction approach are correlated in order to determine if they show a linear 
relationship.  If this is the case, then the correlation coefficient will be near to 1 meaning that both 
approaches are consistent and this will validate the soft computing feature extraction approach. 
 
The ANFIS network shown if figure 25(b) was implemented and simulated using the 
MATLAB/Simulink simulation environment.  Measurement data from test 4 were used to train two 
ANFIS networks (one for each tie bar).  Table II shows the number of cycles used as patterns for 
training and for validation, the number of epochs needed to train the ANFIS networks, the RMSE 
value obtained after training, and the RMSE values obtained after validation. 
 

Table II:  ANFIS RMSE training and validation results 
 No. Cyc. 

Training 
No. Cyc. 
Testing 

Epochs 
Training 

RMSE 
Training 

RMSE 
Testing 

Disp TB1 10 (10-19) 10 (20-29) 500 0.034509 0.03718 
Disp TB2 10 (10-19) 10 (20-29) 500 0.074661 0.07469 

  
 
The RMSE evolution curve and the angle evolution curve corresponding to each tie bar tested in 
test 4 are shown in Figures 26(a) and 26(b), respectively. Note in these figures that both curves are 
very similar in shape and trend. The correlation coefficients between the corresponding curves for 
tie bar 1 (LJA0399) and tie bar 2 (AEX5714) are r(RMSE TB1, ang. TB1 disp) = 0.9792 and 
r(RMSE TB1, ang. TB1 disp) = 0.9653, respectively.  Therefore, these values show that the 
corresponding curves for both tie bars are highly correlated, meaning that the results from two 
different approaches are similar, thus validating the SCFEA approach. 
 

 

twist 

Hybrid 
learning 
algorithm 

axial load 

disp. TB1_est 

disp. TB1_meas 

error 
 
ANFIS 

  
     (a)    (b) 

Figure 25: (a) System identification using an ANFIS network; (b) ANFIS structure. 
 

 
(a) (b) 

Figure 26: (a) RMSE evolution curve; (b) angle evolution curve. 
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3.5 Tie bar critical degradation detection 
 
In this section results of work carried out to develop a tie bar critical degradation detection 
algorithm based on pattern recognition of the features extracted by the SCFEA are presented.  Two 
approaches have been considered, statistical process control (SPC) and monotonically increasing 
function detection. 
 
SPC is a technique commonly used to monitor the manufacturing process in order to reduce 
variability and build quality into the product [Montgomery, 2005].  In the context of structural 
damage detection, the SPC method consists in monitoring the variability of some characteristic 
sensitive to damage in order to detect shifts or departures from an assumed state of health.  For this 
technique, a control chart is built, which is a graphical display of the damage-sensitive feature that 
has been measured or computed versus the sample number or time.  The control chart contains a 
centre line (CL), an upper control limit (UCL), and a lower control limit (LCL) defined based on 
the statistics of the monitored feature [Montgomery, 2005].  The CL represents the average value of 
the measured feature corresponding to a healthy state of the structure.  The UCL and LCL are 
chosen so that if no damage is present in the structure, then nearly all of the measured features will 
fall between the control limits.  Thus, as long as the feature measurements plot within the control 
limits, the structure is assumed to be in a healthy state.  However, a measured feature that plots 
outside of the control limits is interpreted as evidence that the structure has evolved to a state of 
damage [Sohn et al., 2000].  In the case of the tie bar, the feature assumed as sensitive to damage 
and thus the quantity to be monitored, is the angle between the reference feature vector and the 
remaining extracted feature vectors corresponding to the displacement signal. 
 
The SPC method is exemplified using the features extracted from data measurements corresponding 
to test 4 (see section 3). As tie bars are tested in couples it is assumed that there are two sets of 
extracted feature vectors corresponding to two sets of independent measurements.  Thus, in order to 
build the control chart, the angle mean value denoted as µdisp and the angle standard deviation value 
denoted as σdisp are calculated considering the angle value data obtained in section 3.  The CL, 
which is given by the value µdisp, is calculated by first averaging the two angle measures for every 
cycle and then averaging all the obtained values.  The standard deviation value σdisp is calculated 
based on the averages of angle values obtained for every cycle.  The UCL and LCL are then 
obtained based on the σdisp value as: 
 

�
�

�

�

�
�

�

�
±=

q
ZLCLUCL disp

dispdispdisp

σ
µ α,      (61) 

 
where Zα is the value of a standard normal distribution with zero mean and unit variance such that 
the cumulative probability is 100(1-α)%, in this case Zα = 3 which represent the 99.73% 
confidence; q is the size of each subgroup, here as there are two sets of measurements 2 groups are 
assumed.  The generated control chart is shown in figures 27. Critical degradation detection is 
declared when the average measured angle value plots beyond the UCL line for more than two 
consecutive cycles. Note that values below the LCL do not indicate critical damage; in fact lower 
angle values indicate marginal change between feature vectors. 
 
The control limits in the chart shown in figure 27 are fixed and determined considering the 3σ 
limits from the statistics of the whole set of angle measurements derived by comparing the extracted 
feature vectors from the displacement signals from both tie bars.  A second analysis can be 
performed considering each set of measurements separately.  This can be achieved by building two 
control charts, one for each tie bar and corresponding extracted feature vectors.  In this case it is 
proposed to calculate the CL, UCL and LCL in a dynamic manner.  This is, the angle mean value 
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corresponding to each tie bar µdisp is calculated using the running mean, which means that the mean 
value is updated every cycle and so there are the control limits UCL and LCL.  The resultant control 
charts for the two tie bars used in test 4 are shown in figure 28.  Note that, as in the previous case, 
critical damage detection is declared when more than two consecutive points plot beyond the UCL. 
 

 
Figure 27: Control chart fixed control limits. 

 

 
   (a)       (b) 

Figure 28: Control charts using dynamic control limits; (a) TB1, (b) TB2. 
 
The second approach to detect critical damage detection is based on detecting if the angle feature 
vector comparison analysis curve represents a strictly increasing function.  A function f is strictly 
increasing if, whenever x < y, then f(x) < f(y).  Thus the critical degradation detection algorithm uses 
the reference feature vector and compares it with the current cycle displacement feature vector to 
track and identify degraded tie bar condition.  The angle magnitude resultant of this comparison is 
continuously monitored. If in time (as the cycle number increase) the angle feature vector 
comparison curve approaches a strictly increasing function for an interval of more than 20 cycles, 
then a critical degradation of the tie bar is declared.  Figure 29 shows the result of this method 
applied to the extracted features from the tie bars used in test 4. 
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Figure 29: Critical degradation detection by detecting strictly increasing function; (a) TB1, (b) 
TB2. 
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3.6 Real time simulation 
 
Simulation in real-time of the proposed SCFEA applied to tie bar data was carried out using the 
Simulink-dSPACE simulation environment (DS1104 R&D Controller Board) in order to investigate 
the size of memory requirements for algorithm implementation.  The algorithm was implemented 
up to the stage of reporting the extracted feature vectors.  In this simulation two PC’s with dSPACE 
systems connected to them were used as is represented in figure 30.  The first PC-dSPACE system 
was used to send-out, in real time, through a DAC, measured tie bar data.  This simulated the 
process of obtaining measurements from an actual tie bar test.  The second PC-dSPACE system was 
used to read the data though an ADC and run the feature extraction algorithm.  Thus, only the SCFE 
algorithm was compiled and loaded to the second dSPACE board.  The size of the compiled object 
file .ppc (loaded to the dSPACE board) was 575 KB and the maximum processing time was 25 µs. 
 

 

PC + dSPACE 
board 2 

PC + dSPACE 
board 1 

 
Figure 30: Simulink model used for real time simulation of the SCFEA applied to tie bar data. 

 
 
4 Soft computing feature extraction algorithm applied to pitch link data 
 
In this section, results of feature extraction and critical wear detection algorithms developed to 
detect damage in the bearing system of pitch link (referred here to as pitch link system) part of the 
main rotor hub of a Lynx Helicopter are presented.  The algorithm consists of two stages: feature 
extraction and statistical model development for feature discrimination.  The feature extraction part 
of the algorithm is based on the SCFEA proposed in Section 2.3.  The algorithm is applied to strain 
time-histories collected at the University of Bristol (UB) from experiments where two pitch links, 
one with negligible wear and the other noticeably worn, were subjected to a sinusoidal stress cycle 
of tension and compression with forces representative of those encountered in operation.  Results 
show that undamaged (unworn) and damaged (worn) pitch links can be detected and successfully 
classified. 
 
In the previous sections a feature extraction algorithm, referred to as SCFEA combining wavelet 
theory and fuzzy logic theory was proposed to monitor the state of degradation of tie bars.  The 
structure of the proposed SCFEA is used in this section to extract damage sensitive features to 
detect damage in the bearing system of pitch link.  In this development it is assumed that strain 
response signals from undamaged (unworn) and damaged (worn) systems are available for 
comparison and classification.  Furthermore, it is assumed that the strain waveforms responses are 
cyclic signals with a known frequency. 
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4.1 Algorithm implementation 
 
The SCFEA was implemented in the MATLAB/Simulink simulation environment and applied to 
pitch link data that was obtained as will be explained later.  After normalisation, the DWT was 
implemented using the Haar wavelet decomposition filters.  The approximation-detail data pairs 
(cA1(t),cD1(t)) obtained from a single level DWT are used for feature extraction. 
 
Two linguistic variables were defined xA and xD to represent the approximation and detail signals 
(cA1(t),cD1(t)), respectively. The corresponding base variables are denoted as cA and cD for xA and 
xD, respectively.  The linguistic value sets TA and TD with the corresponding membership functions 
for xA and xD are given as follows: 
 

�
�
�

�

�

�
�
�

�

�

=
P

ZE

N

TA  and 

�
�
�

�

�

�
�
�

�

�

=
P

ZE

N

TD ; 

�
�
�

�

�

�
�
�

�

�

=
))((

))((

))((

tcA

tcA

tcA

P

ZE

N

A

µ
µ
µ

µ  and 

�
�
�

�

�

�
�
�

�

�

=
))((

))((

))((

tcD

tcD

tcD

P

ZE

N

D

µ
µ
µ

µ  

 
Thus, three fuzzy sets were defined for xA and three fuzzy sets were defined for xD.  The fuzzy sets 
terms in both cases mean: N = Negative, ZE = Zero and P = Positive.  Figure 31(a) shows the 
associated membership functions defined for xA and for xD together with the two-dimensional 
hyperspace generated by combining the fuzzy sets for the approximation and detail signals.  Each 
one of the rules generated by combining the fuzzy sets for the detail and approximation signals is 
listed in figure 31(b). 
 
The algorithm was applied to strain time-histories collected from two experiments carried out at the 
University of Bristol (UB).  In these experiments two pitch-links, one with negligible wear and the 
other noticeably worn, were set up in an Instron Machine as is shown in figure 32(a).  The machine 
was set up to give a sinusoidal stress cycle of tension and compression, with forces representative of 
those encountered in operation.  A piezo-ceramic patch sensor glued to the part holding the pin, see 
figure 32(b), was connected to a storage oscilloscope and the waveforms obtained from the worn an 
unworn pitch links were recorded.  Examples of the strain response signals obtained are shown in 
figure 33(a).  As the strain response signals present a cyclic behaviour, the SCFEA was applied to 
obtain a feature vector for every cycle of the recorded signals.  Examples of the feature vectors 
obtained for an unworn and worn pitch links are shown in figure 33(b) for cycle 15. 
 

       

Rules 
R1: Region 1 is activated if (cA1 is N and cD1 is N) 
R2: Region 2 is activated if (cA1 is N and cD1 is ZE) 
R3: Region 3 is activated if (cA1 is N and cD1 is P) 
R4: Region 4 is activated if (cA1 is ZE and cD1 is N) 
R5: Region 5 is activated if (cA1 is ZE and cD1 is ZE) 
R6: Region 6 is activated if (cA1 is ZE and cD1 is P) 
R7: Region 7 is activated if (cA1 is P and cD1 is N) 
R8: Region 8 is activated if (cA1 is P and cD1 is ZE) 
R9: Region 9 is activated if (cA1 is P and cD1 is P) 
 

 
                                    (a)                                                                            (b) 
Figure 31: (a) Membership functions for the fuzzy sets defined for xA and for xD together with the 

two-dimensional hyperspace generated by combining the fuzzy sets. (b) Rules generated by 
combining the fuzzy sets for the detail and approximation signals. 
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      (a)            (b) 

Figure 32: (a) Pitch link test set up in an Instrom Machine; (b) Location of piezo-ceramic sensor. 
 

 
Figure 33: (a) Examples of the strain response waveforms obtained for unworn and worn pitch link 

systems; (b) Example of the feature vectors obtained for unworn and worn pitch link systems. 
 
From experience of processing the tie bar data, it is known that not all the rules in the FAM are 
activated and sensitive to damage.  Therefore, a feature (or rule) selection process is proposed based 
on the energy content of the rule (or fuzzy region) activation signals.  Thus, by calculating the rule 
activation energies and comparing their magnitudes for unworn (undamaged) and worn (damage) 
cases, a subset of rules sensitive to damage can be selected.  This means that the feature vector is 
reduced to contain the components with highest energy and sensitive to damage. 
 
From the rule activation energy analysis it was detected that the rules R2, R5 and R8 have the 
highest content of energy while the remaining rules have negligible energy content.  Therefore, the 
feature vector is reduced to contain only three values, the accumulated firing strengths 
corresponding to rules R2, R5 and R8.  Once this vector is normalised to a unit vector, it becomes 
the output of the SCFEA.  Note that this will reduce the computational burden required to process 
the algorithm due that, for real time implementation, the FAM will be formed only with these 3 
rules (3 rules to be evaluated instead of 9 rules, in this case). 
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The time histories of the extracted feature vectors for undamaged (unworn) and damage (worn) 
pitch links strain response signals are shown in figure 34.  In order to determine a reference feature 
vector, and as only the signal for one example of undamaged pitch link system was provided, 
simulation of undamaged systems was obtained by adding white noise (power spectrum density = 
1x10-6) to the original undamaged signal.  Ten undamaged pitch link systems using different 
random noise seeds were simulated.  As each feature vector contains only three values 
(accumulated firing strengths for fuzzy rules 2, 5 and 8), it is possible to represent the feature 
vectors as points in a 3-dimensional (3-D) space.  Figure 35 shows the 3-D representation of all the 
feature vectors corresponding to the unworn pitch link systems (obtained from the original signal 
plus the 10 obtained by adding white noise) and the corresponding feature vectors for a worn pitch 
link system.  Note that a feature vector is obtained for every cycle of the signal (freq. approx. 5Hz), 
and this is carried out up to a length time of 10 seconds.  Thus each point in figure 35 represents a 
feature vector extracted from each cycle of the respective strain response signal.  From the same 
figure it is apparent that two classes can be clearly separated: unworn (undamaged) and worn 
(damaged) pitch link systems. 
 

 
Figure 34: Feature vector time histories for unworn and worn pitch link systems. 

 

 
Figure 35: 3-D representation of the feature vectors obtained for the unworn and worn pitch link 

signals. 
 
A reference or baseline feature vector was calculated by averaging the obtained feature vectors for 
all the unworn cases. The resultant reference vector was: R2=0.4719, R5=0.7476, R8=0.4672.  
Having available the reference feature vector, comparisons with the feature vectors for the worn and 
unworn signals were performed by calculating the angle θ between them.  This comparison was 
carried out in order to determine a threshold which separates damaged (worn) from undamaged 
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(unworn) systems.  This threshold value was fixed at θ = 2 degrees (none of the unworn feature 
vectors when compared with the obtained reference feature vector went more than 2 degrees apart). 
Therefore, if an unknown state pitch link strain response signal is processed, then a damage 
detection alarm will be activated whenever the angle between the reference feature vector and the 
newly extracted feature vectors is equal to 2 or more degrees, and this comparison is performed 
cycle by cycle of the incoming signal.  The damage detection alarm will indicate that the pitch link 
is critically worn. 
 
The effectiveness of the proposed feature extraction and damage detection algorithms was tested by 
processing the unworn and worn signals presented in figure 33(a).  During the first 5 seconds of the 
simulation, the reference feature vector was compared with the feature vectors obtain for the 
unworn pitch link; while during the next 5 seconds of the simulation the reference feature vector 
was compared with the feature vectors obtain for the worn pitch link.  Figure 36 presents the angle 
comparison curve and the damage detection alarm flag (0 = no damage, 1 = damage). 
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Figure 36: Damage detection results for the unworn and worn pitch link signals. 

 
 
4.2 Real time simulation 
The damaged detection algorithm was simulated in real-time using the Simulink-dSPACE 
simulation environment (DS1104 R&D Controller Board). The implemented model is shown in 
figure 37, while the results are shown in figure 38. 
 

 
Figure 37: Pitch Link damage feature extraction and damage detection model implemented in real 

time. 
 
The time required to process the algorithm in real-time as reported by dSPACE (turn around time) 
is between 18 and 28 microseconds. T hus, the algorithm bandwidth is 36 KHz. The compiled 
object file (.ppc) loaded to the DSP processor in the DS1104 board has a size of 723 KB. Note that 
this file includes the data and the algorithm. 
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Figure 38: Damage detection results obtained from the real time simulation. 

 
 
5 Conclusions and future work 
 
In this document a feature extraction algorithm, referred to as soft computing feature extraction 
algorithm (SCFEA), has been proposed under the context of the WISD research project.  The results 
of applying the SCFEA to data gathered from test performed on tie bar and pitch link components 
of the main rotor hub of a Lynx Helicopter have been presented. In the case of tie bar, results from 
data corresponding to six tests, where several tie bars were subjected to high level ground-air-
ground (G-A-G) cyclic load testing until failure, have been presented.  Comparison analyses of the 
extracted feature vectors, both by test and by tie bar, have been performed.  Two measures were 
used to perform comparisons, the angle between vectors and the MAC value.  From the comparison 
analyses curves, it is clear that a change can be appreciated in the dynamic behaviour of the tie bars 
when they are approaching failure.  This change can be observed through the analysis of the 
variation of the extracted feature vectors from the displacement signals.  The results presented 
indicate that a pattern can clearly be seen in the comparison analysis curve in 5 of the 6 tests.  This 
demonstrates the applicability of the proposed approach for the task of feature extraction for Tie bar 
data.  Additionally, two methods for pattern recognition and critical degradation detection of tie bar 
have been proposed.  The first method uses techniques from statistical process control, while the 
second is based on detecting strictly increasing function.  Both methods appear to detect critical 
degradation of tie bars.  However, a robust analysis of these proposals is needed based on the 
statistical analysis considering a broader set of tie bars. 
 
The SCFEA also was applied to strain data histories responses from unworn and worn bearing 
systems of pitch link.  Results show that the angle between the feature vectors extracted from 
signals corresponding to an unworn pitch link and the feature vectors extracted from signals 
corresponding to a worn pitch link can be used to discriminate between these two classes.  Based on 
the average feature vector for unworn pitch link and the average angle between this and feature 
vectors from worn pitch link a threshold angle value was selected.  Thus, values beyond the fixed 
threshold were declared to come from a critically worn pitch link.  Both off-line and real-time 
simulations of the proposed feature extraction and damage detection approaches have demonstrated 
their applicability. 
 
Although promising results have been obtained, it is necessary to clarify that the available data 
corresponds to controlled experiments performed on tests rigs and not from the actual rotorcraft.  A 
test rig for the pitch link system is currently under construction and it is expected to deliver data, 
which will be closer to the expected in a real rotorcraft environment.  At the moment it is uncertain 
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if data from Tie bar system in the rotorcraft environment will be able to be measured.  This means 
that the proposed feature extraction approach will necessarily need some adjustment, modifications 
or tuning to perform correctly in the real environment.  The same may be said for the proposed 
pattern recognition (damage detection) approaches.  Therefore, the development of the algorithms is 
an ongoing task, which means that the algorithms will need to be updated and tested each time new 
data are available. 
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